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Abstract. We formulate a new bootstrap principle which allows for the construction of particle spectra
involving unstable as well as stable particles. We comment on the general Lie algebraic structure which
underlies theories with unstable particles and propose several new scattering matrices. We find a new Lie
algebraic decoupling rule, which predicts the renormalization group flow in dependence of the relative
ordering of the resonance parameters. The proposals are exemplified for some concrete theories which
involve unstable particles, such as the homogeneous sine-Gordon models and their generalizations. The
new decoupling rule can be validated by means of our new bootstrap principle and also via the renormalization
group flow, which we obtain from a thermodynamic Bethe ansatz analysis.

1 Introduction

One of the central quantities in the study of quantum field
theories is the scattering matrix S, which relates asymp-
totic in and out states. In particular in 1 + 1 space-time
dimensions and when concentrating in addition on inte-
grable theories in this context, the bootstrap principle [1]
has turned out to be a very powerful non-perturbative
construction tool. Many consistent exact scattering ma-
trices have been determined based on this idea. Exact
is here always to be understood in the sense that S is
known to all orders in perturbation theory. The bootstrap
principle was also successfully generalized to theories in
half-space [2], theories with purely transmitting defects [3]
and even theories which possess infinitely many resonance
states [4]. However, hitherto there exists no formulation
of a construction principle leading to unstable particles in
the spectrum. Some specific theories containing unstable
particles are known, but so far the latter emerge as poles in
the unphysical sheet as by-products in the scattering pro-
cess of two stable particles. A description of the scattering
process of an unstable particle with another stable or un-
stable particle is entirely missing in this context. Obviously,
scattering processes involving unstable particles do occur
in nature, such that the quest for a proper prescription
is of physical relevance. It is also clear that this cannot
be a scattering theory in the usual sense, since for that
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one requires the particles involved to exist asymptotically,
i.e. for t → ∞. Clearly any unstable particle will vanish
in this limit rendering such a formulation meaningless at
first sight. Nonetheless, some particles have extremely long
lifetimes, and appear to exist quasi-infinitely long from an
experimentalist’s point of view. It appears therefore nat-
ural to seek a principle closely related to the conventional
bootstrap for stable particles. One of the main purposes
of this paper is to provide such a construction principle.

Our bootstrap proposal has the following predictive
power.
(a) It yields the amount of unstable particles together with
their mass. This prediction can be used to explain a mass
degeneracy of some unstable particles which cannot be seen
in a thermodynamic Bethe ansatz (TBA) analysis.
(b) It yields the three-point couplings of all possible interac-
tions, that is, involving stable as well as unstable particles.
(c) It is in agreement with a general Lie algebraic decou-
pling rule, which we also propose in this paper, describing
the behavior when certain resonance parameters tend to in-
finity.

We illustrate the working of the bootstrap for some con-
crete theories which are known to contain unstable particles
in their spectrum, the homogeneous sine-Gordon models
(HSG) [5]. For these models we also test the newly proposed
decoupling rule, which predicts the renormalization group
(RG) flow from the ultraviolet to the infrared directly on
the level of the scattering matrix constructed from the new
bootstrap principle and also by means of a TBA analysis.

2 A bootstrap for unstable particles

In general unstable particles of finite life time τ are de-
scribed by complexifying the physical mass of a stable par-
ticle, by adding a decay width Γ ∼ �/τ . This prescription
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is well established in quantum mechanics, see e.g. [6], and
can also be applied similarly in the quantum field theory
context; see e.g. [7]. When describing the latter by means
of a scattering theory, the formation of an unstable particle
(ij) from two stable ones of type i and j is well understood.
In that case the creation process is reflected by a pole in the
scattering matrix Sij as a function of the Mandelstam vari-
able at sij = (m(ij) − iΓ(ij)/2)2. As discussed for instance
in [7], whenever m(ij) � Γ(ij), the quantity m(ij) admits a
clear cut interpretation as the physical mass. Transforming
as usual in this context from the Mandelstam variable s
to the rapidity variable θ and describing the scattering of
the two stable particles of type i and j with masses mi

and mj by an S-matrix Sij(θ), the resonance pole is sit-
uated at η(ij)

ij = γ
(ij)
ij − iγ̄(ij)

ij with resonance parameters

γ
(ij)
ij , γ̄

(ij)
ij ∈ R

+. It is crucial to note that the formation of
the unstable particle is accompanied by parity breaking,
and poles with γ

(ij)
ij ∈ R

− are not associated to such a
process. Identifying the real and imaginary parts of the
pole yields the well-known Breit–Wigner equations [8]

m2
(ij)

− Γ 2
ij

4
= m2

i +m2
j + 2mimj cosh γ(ij)

ij cos γ̄(ij)
ij ,(2.1)

m(ij)Γij = 2mimj sinh γ(ij)
ij sin γ̄(ij)

ij . (2.2)

Eliminating the decay width from (2.1) and (2.2), we can
express the mass of the unstable particlesm(ij) in the model
as a function of the masses of the stable particles mi,mj

and the resonance parameter γ(ij)
ij . A simple consequence

of (2.1) and (2.2) is that for large resonance parameters
γ

(ij)
ij the masses of the unstable particles are

m(ij) ∼ √
mimjeγ

(ij)
ij /2 , (2.3)

which is a relation we will appeal to quite frequently. In
some places of the literature, e.g. [10, 11], the absolute
value of γ(ij)

ij is used in (2.2) rather than γ(ij)
ij itself, which

seems to suggest that the sign of γ(ij)
ij is not relevant. This

contradicts, however, the findings of the thermodynamic
Bethe ansatz (TBA) analysis below, in which the signs turn
out to be crucial, and we want to argue here that in fact
this absolute value is not needed and even leads to wrong
predictions if implemented. To manifest this point of view,
let us first look at a heuristic argument and consider the
two-particle wave functions ψij ∼ exp(−Γij t) and ψji ∼
exp(−Γ

ji
t) associated to the scattering of particles i with j

and vice versa. When choosing for definiteness Γ
ij > 0, the

function ψij decays for t → ∞ and ψji decays for t → −∞.
This is the effect of parity breaking, suggesting that the
unstable particle (ı) is formed in the process

i+ j → (ı) (2.4)

rather than j + i. As common also for stable particles
we distinguish the anti-particle of an unstable particle by
an overbar, i.e. (ı) is the anti-particle of (ij). In general
in our notation the unstable particles can be recognized

as they carry the names of their parents, where the two
names are inherited. This interpretation is compatible with
a PT -transformation and hence no absolute value is needed
in (2.2). A reason for an artificial introduction of an abso-
lute value is that apparently in (2.2) the parameter Γ can
become negative for γ(ij)

ij < 0, which is unphysical. How-
ever, once one also attaches indices to the decay width,
this concern is eliminated and one obtains a clear physi-
cal meaning for these values. A less heuristic validation of
this point of view will be obtained from our TBA analysis
presented in Sect. 4.2.

One may now ask the natural question whether one
can cross the unstable particle to the other side in the
process (2.4), that is: do the processes (ij) + i or j + (ij)
make any sense and, furthermore, is it possible to formulate
a bootstrap principle for unstable particles? To formulate
such a principle is highly desirable, since it would allow for
an explicit construction of unstable particles. Up to now
they only emerge indirectly, somewhat as a side product
once the stable particle content has been determined.

As already mentioned in the introduction, the main
conceptual obstacle in the formulation of a bootstrap prin-
ciple for unstable particles is the fact that in a well-defined
scattering theory one always deals with asymptotic states.
Nonetheless, one may seek an approach closely related to
a properly defined S-matrix.

Let us formulate the bootstrap principle: We commence
with the fusing of two stable particles to create an unsta-
ble particle as in the process (2.4). To the process (2.4) we
can associate bootstrap equations almost in the usual way.
We scatter for this with an additional particle, say of type
l, and exploit the integrability of the theory. Accordingly
the ordering of the scattering is associative, such that we
can equate the two situations of either l scattering before
or after the creation of the unstable particle. The object
which describes the latter process we refer to as S̃l(ij), in-
dicating with the tilde that we do not view this object as
a standard S-matrix since it involves one particle which
is unstable. In the conventional formulation one generally
assumes that also the created particle exists asymptoti-
cally. It is this assumption we propose to relax. We depict
the bootstrap equation in Fig. 1. Identifying in Fig. 1 the
particle k with (ij) we obtain, according to the outlined

Fig. 1. The bootstrap equations
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conventions, the S̃ bootstrap equations

S̃li(θ − η̄
(ij)i) S̃lj(θ + η̄ı

j(ij)) = S̃l(ı)(θ), (2.5)

where η̄ = ±iπ − η and also η̄ → −η̄ is not a symmetry. In
Fig. 1 we indicate that the angles should be measured anti-
clockwise, which explains the signs. We also note that we do
not assumeparity invariance, so that in general η̄(ı)

ji �= η̄
(ı)
ij .

As further analogy between S̃ and S, we assume that the
crossing and analyticity relations are maintained:

S̃kl(θ) = S̃l̄k(iπ − θ) and S̃kl(θ)S̃lk(−θ) = 1 .
(2.6)

However, we do not demand S̃ to be unitary, for reasons we
will comment upon further below. With the help of (2.6),
one derives the bootstrap equations for the opposite parity
and the ones for the crossed processes i + (ij) → ̄ and
j + (ij) → ı̄ from (2.5)

S̃(ı)l(θ) = S̃il(θ + η̄
(ij)i) S̃jl(θ − η̄ı

j(ij)) , (2.7)

S̃l̄(θ) = S̃l(ij)(θ − η̄ı
j(ij))

×S̃li(θ ± iπ − η̄̄
(ij)i − η̄ı

j(ij)), (2.8)

S̃lı̄(θ) = S̃l(ij)(θ + η̄̄
(ij)i)

×S̃lj(θ ± iπ + η̄̄
(ij)i + η̄ı

j(ij)) . (2.9)

Fromthe crossing relation for the scatteringmatrix and (2.8)
or (2.9) one obtains some relations between the various fus-
ing angles:

η̄
(ı)
ij + η̄̄

(ij)i + η̄ı
j(ij) = ± iπ . (2.10)

At first sight this looks very much like the usual bootstrap
prescription, but there are some differences. As is clear
from the scattering process of two stable particles produc-
ing an unstable one, the angle η̄(ı)

ij is not purely complex
any longer as it is for the situation when exclusively sta-
ble particles scatter. As a consequence, this property then
extends to the other angles η̄̄

(ij)i and η̄ı
j(ij) in (2.5), which

also possess some non-vanishing real parts. Note that (2.10)
implies that the real parts of the three angels involved add
up to zero. At this point we do not have an entirely com-
pelling reason for demanding that, but this formulation will
turn out to work well. The main conceptual difference is
of course that we allow unstable particles to be involved in
the scattering processes. In the time interval 0 < t < τ(ij)
we could formally associate to those particles some op-
erators Z̃†

(ij)(θ), with limt→∞ Z̃†
(ij)(θ) = 1 if τ(ij) < ∞.

It is important to note that these operators do not ex-
ist asymptotically, such that in general

〈
Z̃(ij)(θ)Z̃

†
(ij)(θ

′)
〉

�= δ(θ−θ′). In fact the entire operation of crossing Z̃†
(ij)(θ)

from an in to an out state is ill defined. This property is
then reflected in the non-unitary of S̃. The loss of unitarity
is somewhat natural, since it usually reflects conservation
of probabilities, which of course we do not expect in the
case of unstable particles.

It can already be anticipated that our proposal will lead
to the construction of further unstable particles besides
the primary (fundamental) ones created in the scattering
process of two stable ones. In the following we shall refer to
unstable particles formed in a scattering process involving
at least one primary unstable particle as “secondaries” and
to those which have at least one secondary as their parent
as “tertiaries”, etc. An important observation will be that
tertiaries can be degenerate in mass to stables, primaries
or secondaries.

3 Generalities on theories
with unstable particles

At present all known theories with unstable particles in
their spectrum can be thought of in terms of a simple
universal Lie algebraic structure. The formulation is based
on an arbitrary simply laced Lie algebra g̃ (possibly with
a subalgebra h̃) with rank 	̃ together with its associated
Dynkin diagram (for more details see for instance [9]). To
each node one attaches a simply laced Lie algebra gi and to
each link between the nodes i and j a resonance parameter
σij , as depicted in the ˜g/h̃-coset Dynkin diagram
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Besides the usual rules for Dynkin diagrams, we adopt here
the convention that we add an arrow to the link, which
manifests the parity breaking and allows one to identify
the signs of the resonance parameters. An arrow pointing
from the node i to j simply indicates that σij > 0. Since,
except in Sect. 4.2.6, we are dealing mostly with simply
laced Lie algebras, this should not lead to confusion.

As particular examples one can choose for instance g̃ to
be simply laced and g1 = . . . = g�̃ = SU(k), in which case
one obtains the g̃k-homogeneous sine-Gordon models [5,
10]. This is generalized [12] when taking instead g̃ to be
non-simply laced and gi = SU(2k/α2

i ), with αi being the
simple roots of g̃. The choice g1 = . . . = g�̃ = g with
g being any arbitrary simply laced Lie algebra gives the
g|g̃ theories [13]. An example for a theory associated to a
coset is the roaming sinh-Gordon model [14], which can be
thought of as g̃/h̃ ≡ limk→∞ SU(k+ 1)/SU(k) with g1 =
. . . = g�̃ = SU(2). It is clear that the examples presented
here do not exhaust yet all possible combinations and the
structure mentioned above allows for more combinations
of algebras, which are not yet explored. One is also not
limited to Dynkin diagrams and may consider more general
graphswhich havemultiple links, i.e. resonance parameters,
between various nodes. Examples for such theories were
proposed and studied in [4].

On the base of this Lie algebraic picture one can then
easily construct the scattering matrix. For this, we charac-
terize each particle by two quantum numbers (a, i), which
take their values in different ranges 1 ≤ a ≤ 	i, where 	i is
not necessarily rank gi and 1 ≤ i ≤ 	̃ = rankg̃. This means
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that in total we have
(
	̃× ∑

i 	i

)
different particle types.

The scattering matrix describing the interaction between
these types of particles is then of the general form

Sij
ab(θ, σij) = [Smin

ab (θ)]δij [Sij
ab(θ, σij)]Ĩij , (3.1)

where Smin
ab (θ) corresponds to some scaling model of a sta-

tistical model and Ĩ is the incidence matrix of g̃. It is known
that all S-matrices of these scaling models can be viewed
as minimal parts of some affine Toda field theory (ATFT)
S-matrix [15]. Then Sij

ab(θ, σij) is essentially a CDD fac-
tor [16] for which the coupling constant is chosen to be a
function of the values i, j. At present, all known scattering
theories which involve unstable particles are of this generic
form and in particular all of the above mentioned examples.

We propose here yet a further class of scattering ma-
trices. The presented picture makes it very suggestive to
be generalized by introducing a coupling constant depen-
dence into such models simply by replacing Smin

ab (θ) by a
full affine Toda field theory scattering matrix

Sij
ab(θ,B, σij) := [SATFT

ab (θ,B)]δij [Sij
ab(θ, σij)]Ĩij . (3.2)

Obviously this will not alter any of the bootstrap consis-
tency equations, since the difference between the theory
with a minimal S-matrix and the one with a coupling con-
stant dependence such as (3.2) is simply a CDD factor. It
should also be clear that we may introduce an additional
coupling constant into the second factor in (3.2) by a similar
consideration. As an illustration of the construction prin-
ciple (3.2) we present here a new scattering matrix which
corresponds to the coupling constant dependent version of
the SU(3)2-HSG model. The two self-conjugate particles
in the model named by “ + ” and “ − ” interact as

S±±(θ,B) =
tanh 1

2

(
θ − i π

2B
)

tanh 1
2

(
θ + i π

2B
)

and

S±∓(θ, σ) = ± tanh
1
2

(
θ ± σ − i

π
2

)
. (3.3)

It is easy to check that these matrices satisfy the unitarity–
analyticity and crossing relations. There is no pole in the
physical sheet, so that no fusing takes place in this model.
There exist various distinct limits: Taking the coupling
constant B to be real and 0 ≤ B ≤ 2 the scattering of two
particles of the same type is described by the sinh-Gordon
scattering matrix. The analytic continuationB → 1+iσ̄/π
turns S±±(θ) into two copies of the roaming trajectory
S-matrix of Zamolodchikov [14]. Taking the limit σ̄ →
∞ reduces the whole system (3.3) to the usual SU(3)2-
HSG model. The limit σ → ∞ decouples the system into
a direct product of two theories described either by the
sinh-Gordon scattering matrix, two roaming trajectory S-
matrices, two thermally perturbed Ising models or a free
boson, depending on the value of B.

3.1 Decoupling rule

It is of special interest to investigate the behavior of such
systems when certain resonance parameters σij tend to
infinity. According to (2.3) this limit corresponds to a sit-
uation when the energy scale of the unstable particle is so
large that it can never be created. As a consequence, the
particle content of the theory will be altered when such
a limit is carried out. This feature should be captured by
the bootstrap construction. When taking several of such
limits in a consecutive order, this behavior is reflected in
addition in the renormalization group flow in the form of
the typical staircase pattern of the Virasoro central charge
as a function of the inverse temperature as will be discussed
below. In the direction from the infrared to the ultraviolet,
the flow from one plateau to the next is then associated
to the formation of an unstable particle with mass (2.3).
The challenge is of course to predict the positions, that is,
the height and the on-set of the plateaus, as a function of
the temperature. The on-set is simply determined by the
formula (2.3). In order to predict the height, i.e. the fixed
points of the RG flow, we propose the following.
Decoupling rule: Call the overall Dynkin diagram C and
denote the associated Lie group and Lie algebra by G̃C
and g̃C , respectively. Let σij be some resonance parameter
related to the link between the nodes i and j. To each
node i attach a simply laced Lie algebra gi. Produce a
reduced diagram Cji containing the node j by cutting the
link adjacent to it in the direction i. Likewise produce a
reduced diagram Cij containing the node i by cutting the
link adjacent to it in the direction j. Then the G̃C-theory
decouples according to the rule

lim
σij→∞ G̃C = G̃(C−Cij) ⊗ G̃(C−Cji)/G̃(C−Cij−Cji) . (3.4)

We depict this rule also graphically in terms of Dynkin
diagrams:
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According to the GKO-coset construction [19], this means
that the Virasoro central charge flows as

cg̃C → cg̃C−Cij
+ cg̃C−Cji

− cg̃C−Cij−Cji
. (3.5)

The rule may be applied consecutively to each disconnected
subgraph produced according to the decoupling rule. We
stress that this rule is really a decoupling rule and not a
fusing rule, it only predicts the flow from the ultraviolet
to the infrared and not vice versa. This is of course nat-
ural, as scaling functions measure the degrees of freedom
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of the system and the information loss in the RG flow
is irreversible. Hence, potentially we have for the visible
unstable particles [	(	− 1)/2]! different types of flows cor-
responding to the possible orderings for the masses. For
SU(	+1) the particular ordering σ2i,2i+1 > 0, σ2i−1,2i < 0
with |σ2i,2i+1| < |σ2i−1,2i| leads to the decoupling rule as
discussed in [20], which is a special case of (3.4). In the
following we shall confirm the general rule (3.4) directly on
the level of the scattering matrix and also by means of a
TBA analysis which yields the RG flow passing along the
central charges as predicted by (3.5).

More familiar is a decoupling rule found by Dynkin [17]
for the construction of semi-simple1 subalgebras h̃ from a
given algebra g̃. For the more general diagrams which can
be related to the g̃k-HSG models the generalized rule can
be found in [18]. These rules are all based on removing some
of the nodes rather than links. For our physical situation
at hand this corresponds to sending all stable particles
which are associated to the algebra of a particular node to
infinity. As in the decoupling rule (3.4) the number of stable
particles remains preserved, it is evident that the two rules
are inequivalent. Letting for instance the mass scale in gj

go to infinity, the generalized (in the sense that gj can be
different from A�) rule of Kuniba is simply depicted as
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We illustrate the working of the rule (3.4) with the
simple example of the SU(4)2-HSG model. For level 2,
we can associate the simple roots to the nodes of the g̃-
Dynkin diagram. For the ordering σ13 > σ12 > σ23 we
predict from (3.4) the flow
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1 The subalgebras constructed in this way are not necessarily
maximal and regular. A guarantee for obtaining those, except in
six special cases, is only given when one adequately manipulates
the extended Dynkin diagram.

Taking instead the ordering σ23 > σ13 > σ12, we compute
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The central charges can be obtained from (4.2)
using (3.5). We will elaborate more on this example in
Sects. 4.1.2 and 4.2.1 from the bootstrap and TBA point
of view, respectively. It is important to note the non-
commutative nature of the limiting procedures. For more
complicated algebras it is essential to keep track of the
labels on the nodes, since only in this way one can decide
whether they cancel against the subgroup diagrams or not.
See Sect. 4.2 for more details and examples.

4 The homogeneous sine-Gordon models

Let us now consider some specific choice of algebras: g1 =
. . . = g�̃ = SU(k), which as we mentioned corresponds to
the g̃k-HSG models. These theories have recently attracted
some attention, because it could be argued even from a
Lagrangian point of view that besides stable particles they
also contain unstable particles in their spectrum [5]. The
HSG models belong to the huge class of massive integrable
models which can be obtained as relevant perturbations
from conformal field theories in the spirit of [21]

HGk−HSG = HGk/U(1)�−CFT − λ

∫
d2xφ(x, t) . (4.1)

The underlying conformal field theory is a WZNW-
Gk/U(1)�-coset theory [19, 22] with k being the level and
	 the rank of a semi-simple Lie algebra g. The Virasoro
central charge c and the conformal dimensions ∆, ∆̄ of the
perturbing operator φ are

c = 	
k h− h∨

k + h∨ and ∆ = ∆̄ =
h∨

k + h∨ . (4.2)

Here (h∨)h is the (dual) Coxeter number of g. In the
notation of the massive theory we will not carry along
the subalgebra U(1)� as indicated in (4.1) for simplicity.
The S-matrices involving the stable particles for simply
laced and non-simply laced algebras were proposed in [10]
and [12], respectively. Examples on which we will focus a
lot in the following are models with level k = 2. Adopting
the notation of [20], the related scattering matrix may be
written for the simply laced case as

Sij(θ, σij) = (−1)δij ε(σij)(σij , 2)Iij , 1 ≤ i, j ≤ 	,
(4.3)
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where I denotes the incidence matrix of g. It is convenient
to abbreviate

(σ, x) := tanh(θ + σ − iπx/4)/2 . (4.4)

The ε(x) is the step-function, i.e. ε(x) = 1 for x ≥ 0,
ε(x) = −1 for x < 0. The model contains (	− 1) linear in-
dependent resonance parameters σij . As a convenient basis
one usually chooses those which can be associated directly
to the links in the Dynkin diagram, i.e. the primary unsta-
ble particles. The σ’s can be thought of as being composed
as a difference σij = σi − σj , such that σij = −σji and
σij = σik +σkj . Up to now, the precise correspondence be-
tween the unstable particles occurring in the HSG model
and all these resonance parameters has not been worked
out in the literature. So far stable particles were associated
to simple roots and unstable particles have been identified
on the quantum level as the sum of two simple roots αi, αj

with Iij �= 0. However, these are only the primaries and as
we already mentioned, we also expect to find secondaries,
tertiaries, etc. Here we want to provide evidence that un-
stable particles can in fact be related to each non-simple
positive root, such that the amount of unstable particles
is in fact

# of unstable particles = 	 (h− 2)/2. (4.5)

It will turn out that not all of these particles are visible in
the RG scaling function, since our bootstrap proposal will
show that by construction several of the unstable particles
are unavoidably degenerate in the mass given by (2.3), such
that only 	(	 − 1)/2 unstable particles will be detectable
by a TBA analysis. This means whenever h = 	+ 1, as in
SU(	+1), we can see all unstable particles in an RG flow,
but otherwise not as for instance in SO(2 	).

4.1 Bootstrap construction

We present now three examples which we consider to be in-
structive to illustrate the working of the bootstrap principle
as they gradually include new features. The SU(3)2-HSG
model contains only primary unstables, the SU(4)2 model
contains in addition secondaries and theSO(8)2 model is an
example for a theory with tertiaries and mass degeneracy.
Note that for level 2 all particles are self-conjugate.

4.1.1 The SU(3)2-HSG model

Starting now with the known part of the scattering ma-
trix (4.3) for the stable particles, and leaving the remaining
entries which involve unstable particles unknown, we con-
struct consistent solutions to the bootstrap equations (2.5),
(2.8), and (2.9). We can fix the imaginary parts of the fus-
ing angles by the requirement that for vanishing resonance
parameters we want to reproduce the masses predicted by
the Breit–Wigner formula. Choosing the masses of the sta-
ble particles to be m1 = m2 = m the one for the unstable
results inm(12) =

√
2m. This argument does not constrain

the real parts of the fusing angles, so that they are not
completely fixed and still contain a certain ambiguity. The
different choices of these parameters give rise to slightly
different theories. First we consider the case σ21 > 0:
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For the SU(3)2-HSG model with this choice of the reso-
nanceparameter,we thenfind the followingbootstrap equa-
tions:

S̃l(12)(θ) = S̃l1(θ + (1 − ν)σ12

+iπ/4)S̃l2(θ − νσ12 − iπ/4) (4.6)

from which we construct

S̃SU(3)(θ, σ12) = (4.7)



−1 −(σ12, 2) −((1 − ν)σ12, 3)

(σ21, 2) −1 −(νσ21, 1)

−((ν − 1)σ12, 1) −(νσ12, 3) −1


 .

Here we label the rows and columns in the order {1, 2, (12)}.
According to the principles outlined above, the S-matrix
(4.7) allows for the processes

1 + 2 → (12), 2 + (12) → 1, (12) + 1 → 2. (4.8)

The related fusing angles are read off from (4.7) as

η
(12)
12 = −iπ/2 + σ21,

η2
(12)1 = −3iπ/4 + (1 − ν)σ12,

η1
2(12) = −3iπ/4 + νσ12 (4.9)

and are interrelated through (2.10), which still holds even
though the η’s have non-vanishing real parts. We can em-
ploy these fusing angles and compute the masses and de-
cay widths by means of the Breit–Wigner formulae (2.1)
and (2.2). Taking again for simplicity m1 = m2 = m and
in addition ν = 1/2, we obtain for the first process in (4.8)

m(12) =
√

2m coshσ21/2 and Γ(12) = 2
√

2m sinhσ21/2 .
(4.10)

Employing now also in the process 2+(12) → 1 the Breit–
Wigner formula, we construct in the limit σ12 → 0 the
values m1 = m and Γ1 = 0. Likewise, in the last process
in (4.8) we obtain m2 = m and Γ2 = 0.

The asymptotic limit t → ∞ becomes meaningful when
we operate on an energy scale at which the unstable particle
has not even been created yet, i.e. Γ(12) → ∞ ≡ σ21 → ∞.
In that case the theory decouples into two SU(2)2 models,
i.e. free fermions, with S11 = S22 = −1. This is a simple
version of the decoupling rule (3.4). We consider now a
different theory with σ12 > 0:
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Taking now also in this case for simplicity ν = 1/2, we find
the following bootstrap satisfied:
S̃l(12)(θ) = S̃l2(θ − σ12/2 + iπ/4)S̃l1(θ + σ12/2 − iπ/4),

(4.11)
which yields the S-matrix

S̃SU(3)(θ, σ21) (4.12)

=




−1 (σ12, 2) −(σ12/2, 1)
−(σ21, 2) −1 −(σ21/2, 3)

−(σ21/2, 3) −(σ12/2, 1) −1


 .

The S-matrix (4.12) allows for the processes

2+1 → (12), 1+(12) → 2, (12)+2 → 1, (4.13)

instead of (4.8). Now the fusing angles are read off as

η
(12)
21 = −iπ/2 + σ12, η2

1(12) = −3iπ/4 − σ12/2,

η1
2(12) = −3iπ/4 − σ12/2 (4.14)

and also satisfy (2.10). The masses and decay width are
obtained again from (2.1) and (2.2) with σ12 → σ21. As
a whole, we can think of this theory simply as being ob-
tained from the Z2-Dynkin diagram automorphism which
exchanges the roles of the particles 1 and 2. However, since
parity invariance is now broken this is not a symmetry any
more and the two theories are different. In the asymptotic
limit σ12 → ∞, we obtain once again a simple version of the
decoupling rule and the theory decouples into two SU(2)2
models.

We also want to make sense of joining two SU(3)2 the-
ories together when one of the particles is shared, whereas
the remaining ones interact trivially. For the choice σ21 > 0
and σ23 > 0 this corresponds algebraically to
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Labelling the rows and columns as {1, 2, 3, (12), (23)} we
can simply associate the following scattering matrix to
this model

S̃SU(3)⊗SU(3)
SU(2)

(4.15)

=




−1 −(σ12, 2) 1 −(σ12/2, 3) 1

(σ21, 2) −1 −(σ32, 2) −(σ21/2, 1) −(σ23/2, 1)

1 (σ23, 2) −1 1 −(σ32/2, 3)

−(σ21/2, 1) −(σ12/2, 3) 1 −1 1

1 −(σ32/2, 3) −(σ23/2, 1) 1 −1




.

The particle 2 is shared by the two original theories. There
is a well-defined limit of this matrix, which is in agreement
with the decoupling rule

lim
σ21→∞ S̃SU(3)⊗SU(3)/SU(2)

= lim
σ23→∞ S̃SU(3)⊗SU(3)/SU(2) = S̃SU(3)⊗SU(2) .(4.16)

Similarly, we can construct the remaining three cases of
this kind σ21 < 0, σ23 < 0 or σ21 > 0, σ23 < 0 or σ21 < 0,
σ23 > 0.

So far we have seen from this example that it is possible
to develop a consistent bootstrap and that the outcome
depends on the choice of the σ’s. New particles are not
predicted from this.

4.1.2 The SU(4)2-HSG model

In comparison with the previous SU(3)2 model the SU(4)2
model introduces a novel feature. Besides the fundamen-
tal unstable particles formed from two stable particles, it
also allows for the formation of further unstable particles
from the fusing of one unstable particles with a stable one,
i.e. secondaries. We start with the case σ21 > 0, σ23 > 0:
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Taking the two parameters of the two SU(3)2-copies oc-
curring here to ν = 1/2, we proceed analogously as before
and have the following bootstrap equations to solve:

S̃l(12)(θ) = S̃l1

(
θ − σ21

2
+

iπ
4

)
S̃l2

(
θ +

σ21

2
− iπ

4

)
,

S̃l(23)(θ) = S̃l3

(
θ − σ23

2
+

iπ
4

)
S̃l2

(
θ +

σ23

2
− iπ

4

)
,

S̃l(123)(θ) = S̃l(12)

(
θ + µ̃σ21 − µσ23 +

iπ
4

)

× S̃l3

(
θ +

2µ̃+ 1
2

σ21 − (1 + µ)σ23 − iπ
2

)
,

S̃l(123)(θ) = S̃l(23)

(
θ +

2µ̃+ 1
2

σ21 − 2µ+ 1
2

σ23 +
iπ
4

)

× S̃l1

(
θ +

2µ̃− 1
2

σ21 − µσ23 − iπ
2

)
. (4.17)

Here we have already determined several fusing angles by
the requirement that the RHS of the last two equations have
to be identical. The parameters µ and µ̃ enter for the same
reason as in the previous section and remain in principle
free. For simplicity we choose them now as µ = −µ̃ = 1. As
a consistent solution to the bootstrap we then construct

S̃SU(4)(θ, σ21, σ23) = (4.18)



• • • • −
(

σ23−2σ21
2 , 3

) (
− 3σ21+2σ23

2 , 2
)

• • • • • −1

• • • −
(

2σ32+σ21
2 , 3

)
•

(
− σ21+4σ23

2 , 2
)

• • ∗ • 1 −(−σ21 − σ23, 3)

∗ • • 1 • −
(

− σ21+3σ23
2 , 3

)

∗ ∗ ∗ ∗ ∗ −1




.

Here we labeled the rows and columns in the order {1, 2,
3, (12), (23), (123)}. The particles are all self-conjugate.
We abbreviated the entries

• ≡ S̃SU(3)⊗SU(3)/SU(2)((σ21 > 0, σ23 > 0)). (4.19)
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Note that (4.18) does not completely contain the S-matrix
S̃SU(3)⊗SU(3)/SU(2), since there are some entries which do
not coincide, which indicates that the two SU(3)-copies
still interact non-trivially. Only the ones indicated by • are
identical to those in (4.15). For conciseness we also did not
spell out some entries indicatedby“∗”. If the ∗ is in the entry
S̃ij , we always report explicitly S̃ji and the omitted entry
can simply be obtained from the crossing relation (2.6). In
this case this reads (σ, x) → −(−σ, 4 − x). According to
the principles outlined above, the S-matrix (4.18) allows
for the processes

1 + 2 → (12), (12) + 1 → 2,
2 + (12) → 1, 3 + 2 → (23),
(23) + 3 → 2, 2 + (23) → 3,
(12) + 3 → (123), (123) + (12) → 3,
3 + (123) → (12), (23) + 1 → (123),
(123) + (23) → 1, 1 + (123) → (23).

(4.20)

The related fusing angles are read off as

η
(12)
12 = σ21 − iπ

2
, η2

(12)1 = −σ21

2
− 3iπ

4
,

η1
2(12) = −σ21

2
− 3iπ

4
, η

(23)
32 = σ23 − iπ

2
,

η2
(23)3 = −σ23

2
− 3iπ

4
, η3

2(23) = −σ23

2
− 3iπ

4
,

η
(123)
(12)3 =

σ21 − 2σ23

2
− 3iπ

4
,

η3
(123)(12) = −σ21 − σ23 − 3iπ

4
,

η
(12)
3(123) =

σ21 + 4σ23

2
− iπ

2
,

η
(123)
(23)1 =

σ23 − 2σ21

2
− 3iπ

4
,

η1
(123)(23) =

−σ21 − 3σ23

2
− 3iπ

4
,

η
(23)
1(123) =

3σ21

2
+ σ23 − iπ

2
. (4.21)

One verifies that the sum relation of the fusing angles (2.10)
holds for all possible processes. The first two lines in (4.20)
correspond simply to two copies of SU(3)2 and one does not
need to comment further on them.An interesting prediction
results from the consideration of the first two processes in
the last two lines of (4.20). Making in the first process the
particle (12) and in the second the particle (23) stable, by
σ2 → σ1 and by σ2 → σ3, respectively, both predict the
mass of the particle (123) as

m(123) ∼ me|σ13|/2 . (4.22)

This value is precisely the one we expect from the approx-
imation in the Breit–Wigner formula (2.3). Note that in
one case we obtain σ13 and in the other σ31 as a resonance
parameter. The difference results from the fact that ac-
cording to the processes (4.20), the particle (123) is either

formed as (1 + 2) + 3 or 3 + (2 + 1). Thus the different
parity shows up in this process, but this has no effect on
the values for the mass. We also confirm the decoupling
rule on the basis of the constructed S-matrix

lim
σ21→∞ S̃SU(4)(σ21, σ23) = S̃SU(2) + S̃SU(3)(σ23) , (4.23)

lim
σ23→∞ S̃SU(4)(σ21, σ23) = S̃SU(3)(σ21) + S̃SU(2) . (4.24)

Similarly we can construct the case σ12 > 0, σ32 > 0, which
leads essentially to a similar qualitative behavior and we
can therefore omit its presentation here. More interesting
is the case σ21 > 0, σ32 > 0:
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Taking again the two parameters of the SU(3)2-algebras
to ν = 1/2, we proceed analogously as before and have the
following bootstrap equations to solve:

S̃l(12)(θ) = S̃l1

(
θ − σ21

2
+

iπ
4

)
S̃l2

(
θ +

σ21

2
− iπ

4

)
,

S̃l(23)(θ) = S̃l2

(
θ − σ32

2
+

iπ
4

)
S̃l3

(
θ +

σ32

2
− iπ

4

)
,

S̃l(123)(θ) = S̃l(12)

(
θ − µ̃σ21 − µσ32 +

iπ
4

)

× S̃l3

(
θ +

1 − 2µ̃
2

σ21 + (1 − µ)σ32 − iπ
2

)
,

S̃l(123)(θ) = S̃l1

(
θ − 1 + 2µ̃

2
σ21 − µσ32 − iπ

2

)
(4.25)

× S̃l(23)

(
θ +

1 − 2µ̃
2

σ21 +
1 − 2µ

2
σ32 − iπ

4

)
.

Again we have already fixed several fusing angles by the
requirement that the RHS of the last two equations have to
be identical. The parameters µ and µ̃ enter for the same rea-
son as in the previous section and remain in principle free.
As a consistent solution to the bootstrap we construct now

S̃SU(4)(θ, σ21, σ32) = (4.26)



• • • • −
(

− 2σ21+σ32
2 , 1

) (
− (1+2µ̃)σ21+2µσ32

2 , 1
)

• • • • • 1

• • •
(

2σ32+σ21
2 , 3

)
•

(
(1−2µ̃)σ21+2(1−µ)σ32

2 , 1
)

• • ∗ •
(

σ32+σ21
2 , 2

)2
(−µ̃σ21 − µσ32, 3)

∗ • •
(

− σ32+σ21
2 , 2

)2
• −

(
(1−2µ̃)σ21+(1−2µ)σ32

2 , 1
)

∗ ∗ ∗ ∗ ∗ −1




.

As before, we label the rows and columns in the order
{1, 2, 3, (12), (23), (123)} and abbreviate the entries

• ≡ S̃SU(3)⊗SU(3)/SU(2)((σ21 > 0, σ32 > 0)). (4.27)
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The ∗ entries can be obtained in the same way as in (4.18).
The S-matrix (4.26) allows for the processes

1 + 2 → (12), (12) + 1 → 2,
2 + (12) → 1, 2 + 3 → (23),
3 + (23) → 2, (23) + 2 → 3,
(12) + 3 → (123), (123) + (12) → 3,
3 + (123) → (12), 1 + (23) → (123),
(23) + (123) → 1, (123) + 1 → (23).

(4.28)

The related fusing angles are read off as

η
(12)
12 = σ21 − iπ

2
, η2

(12)1 = −σ21

2
− 3iπ

4
,

η1
2(12) = −σ21

2
− 3iπ

4
, η

(23)
23 = σ32 − iπ

2
,

η2
3(23) = −σ32

2
− 3iπ

4
, η3

(23)2 = −σ32

2
− 3iπ

4
,

η
(123)
(12)3 =

2σ21 + 4σ32 − 3iπ
4

,

η3
(123)(12) = −4µ̃σ21 + 4µσ32 + 3iπ

4
,

η
(12)
3(123) =

(2µ− 2)σ32 + (2µ̃− 1)σ21 − iπ
2

,

η
(123)
1(23) =

2σ32 + 4σ21 − 3iπ
4

,

η1
(23)(123) =

(4µ̃− 2)σ21 + (4µ− 2)σ32 − 3iπ
4

,

η
(23)
(123)1 = − (2µ̃+ 1)σ21 + µσ32 + iπ

2
. (4.29)

Again one verifies that the relation (2.10) holds for all
possible processes. The first two lines in (4.29) correspond
again just to two copies of SU(3)2. Also in this case we
predict themass of the particle (123) to correspond to (4.22)
making in the first process the particle (12) and in the
second the particle (23) stable, by σ2 → σ1 and by σ2 →
σ3, respectively. There are, however, some fundamental
differences with regard to the previous case. First we note
that the entries S̃(12)(23)(θ) and S̃(23)(12)(θ) possess a double
pole. We can interpret this as in the case when all particles
are stable in terms of the usual Coleman–Thun mechanism
[23]. We depict the corresponding fusing structure in Fig. 2.
Also the decoupling rule works differently in this case.
Now we have σ31 > σ21, σ32 > 0 and due to the non-
commutative nature of the limits we obtain a different flow
when the resonance parameters are taken to approximate
infinity. We note that apart from the • all the entries tend to
±1. Thus we also confirm the decoupling rule in the version

lim
σ31→∞ S̃SU(4)(σ21, σ32) ∼ S̃SU(3)⊗SU(3)

SU(2)
. (4.30)

The case σ12 > 0, σ23 > 0 is very similar to this one in
behavior and does not need to be reported. In summary, we
saw in this section that the bootstrap leads to the prediction

Fig. 2. Coleman–Thun mechanism

of secondary unstable particles with a mass computable
from the Breit–Wigner formula. In addition, we saw that
by changing the order of the resonance parameters the
fusing structure does not merely change with regard to
the parity but even develops new pole structures such as
double poles.

4.1.3 The SO(8)2-HSG model

For all models studied so far, we found a one-to-one corre-
spondence between the particle content of the theory and
the amount of resonance parameters σij with i < j and
i, j ∈ {1, . . . , 	}. With regard to the RG scaling functions,
which will be computed in the next section, this means that
every plateau can be interpreted naturally as related to the
onset energy for the excitation of a particle. However, as we
already indicated in Sect. 4, this one-to-one correspondence
only holds for the SU(	+1)2-HSG models. For the remain-
ing simply laced algebras it turns out that the dimension of
the positive root space is always larger than the amount of
parameters σij at hand. We study here the simplest exam-
ple which will exhibit such a behavior, i.e. the SO(8)2-HSG
model. According to (4.5) there are 12 unstable particles,
whereas the amount of available resonance parameters is
only 10. The following analysis will show that the general-
ized bootstrap equations we propose provide a satisfactory
explanation for this mismatch, in agreement with the pre-
vious understanding. We will demonstrate that, in fact,
there are 12 particles present in the theory, but the masses
of four of them are unavoidably pairwise degenerated. Since
both the RG scaling functions and the decoupling rule are
determined by the relative mass scales of the particles in
the theory, such a degeneracy cannot be unraveled in that
context and only 10 particles will be visible.

We consider now the SO(8)2-HSG model for the choice
σ13 > 0, σ23 > 0, σ43 > 0 and label the particles as indi-
cated in the Dynkin diagram:
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Matching every particle with a positive root of D4, we
collect the 12 particles in the model in the set

P = {1, 2, 3, 4, (13), (23), (43), (123), (423),

(143), (1234), (12334)} , (4.31)

which allows later for very compact notations. With regard
to the previous cases we have a further novelty, namely
the occurrence of tertiary unstable particles, i.e. (1234)
and (12334). In addition, these two particles exhibit the
mentioned mass degeneracy, as we will see later in detail.
For the given choice of the resonance parameters we have
the bootstrap equations

S̃l(i3)(θ) = S̃l3

(
θ − σi3

2
+

iπ
4

)
S̃li

(
θ +

σi3

2
− iπ

4

)
,

S̃l(ij3)(θ) = S̃lj

(
θ − µijσji + 2σ3j

2
+

iπ
2

)

× S̃l(i3)

(
θ +

µijσij + σi3

2
− iπ

4

)
,

S̃l(ij3)(θ) = S̃li

(
θ − µijσji + 2σ3i

2
+

iπ
2

)

× S̃l(j3)

(
θ +

µijσij + σj3

2
− iπ

4

)
,

S̃l(1234)(θ) = S̃l(ki3)

(
θ − µkiσki + µ42σ24 + κ

2
+

iπ
4

)

× S̃lj

(
θ +

µ42σ42 + σj3 − κ

2
− iπ

4

)
,

S̃l(12334)(θ) = S̃l(1234)

(
θ − µ42σ42 + σ13 − κ+ λ

2
+

iπ
4

)

× S̃l3

(
θ − σ13 + λ

2
− iπ

2

)
,

S̃l(12334)(θ) = S̃l(j3)

(
θ − σ1j + λ

2
+

iπ
4

)

× S̃l(ki3)

(
θ +

µkiσik + σ31 − λ

2
− iπ

2

)
.(4.32)

The indices i, j, k can take values in {1, 2, 4}, such that no
two indices are repeated and the associated particles are
in P. This convention will be used throughout this section.
The parameters µij , κ and λ are in principle free but will be
constrained below in order to match consistently the pole
structure of S̃ with the corresponding mass spectrum. The
entries of the S-matrix can be written in a very compact
form, namely

S̃i(j3)(θ) = (−1)δij

(
σi3 + σij

2
, 1 + 2δi3

)
,

S̃i(jk3)(θ) = (−1)δij+δik

(
µjkσjk + 2σi3

2
, 2

)
,

i �= 3,

S̃(i3)(j3)(θ) = (−1)δij ,

S̃(ij3)(kl3)(θ) = (−1)δikδjl ,

S̃(i3)(jk3)(θ) = −(−1)
δij+δik

(
µjkσjk + 2σi3

2
, 1

)
,

S̃(i3)(12334)(θ) =
(
σi1 − λ

2
, 3

)
, (4.33)

S̃(ij3)(1234)(θ) =
(
µijσji + µ42σ42 − κ

2
, 3

)
,

S̃(ij3)(12334)(θ) = −
(
µijσji + σ31 − λ

2
, 3

)
,

S̃(1234)(12334)(θ) =
(
µ42σ24 + σ31 + κ− λ

2
, 3

)
,

S̃(1234)(1234)(θ) = S̃(12334)(12334)(θ) = S̃3(jk3)(θ)

= S̃(i3)(1234)(θ) = −1. (4.34)

According to the same principles outlined in the previous
sections, the physical scattering processes involving the
fundamental (primary) unstable particles as well as the
corresponding fusing angles are

3 + j → (j3), (j3) + 3 → j, j + (j3) → 3,
(4.35)

η
(j3)
3j = σj3 − iπ

2
, ηj

(j3)3 = −σj3

2
− 3iπ

4
,

η3
j(j3) = −σj3

2
− 3iπ

4
, (4.36)

where we recall that j can take the values 1, 2 and 4,
in correspondence with the first equation in (4.32). The
processes involving secondary unstable particles are

j + (k3) → (jk3), (jk3) + j → (k3),

(k3) + (jk3) → j, k + (j3) → (jk3),

(jk3) + k → (j3), (j3) + (jk3) → k, (4.37)

with (jk3) ∈ P, such that every secondary unstable parti-
cle (123), (423) and (143) can be formed in two different
processes. The associated fusing angles can also be written
in a closed form

η
(jk3)
j(k3) =

2(σ3j + σjk) − 3iπ
4

,

η
(k3)
(jk3)j =

µjkσjk + 2σk3 − iπ
2

,

ηj
(k3)(jk3) =

2(µjkσkj + 2σ3k) − 3iπ
4

,

η
(jk3)
k(j3) =

2(σ3k + σkj) − 3iπ
4

,

η
(j3)
(jk3)k =

µjkσjk + 2σj3 − iπ
2

,

ηk
(j3)(jk3) =

2(µjkσkj + 2σ3j) − 3iπ
4

. (4.38)
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Finally, the processes which involve the tertiary unstable
particles (1234) and (12334) are

(kl3) + j → (1234), (1234) + (kl3) → j,

j + (1234) → (kl3), (j3) + (kl3) → (12334),

(kl3) + (12334) → (j3), (12334) + (j3) → (kl3),

(1234) + 3 → (12334),

3 + (12334) → (1234),

(12334) + (1234) → 3, (4.39)

with fusing angles

η
(1234)
(kl3)j =

µklσkl + 2σj3 − iπ
2

,

ηj
(1234)(kl3) =

2(µklσlk + µ42σ42 − κ) − 3iπ
4

,

η
(kl3)
j(1234) =

2(µ42σ24 + κ+ 2σ3j) − 3iπ
4

η
(12334)
(j3)(kl3) =

2(µklσlk + 2σ3j) − 3iπ
4

,

η
(j3)
(kl3)(12334) =

µklσkl + σ13 + λ− iπ
2

,

η
(kl3)
(12334)(j3) =

2(σj1 − λ) − 3iπ
4

,

η
(12334)
(1234)3 =

2(µ42σ42 − κ) − 3iπ
4

,

η
(1234)
3(12334) =

σ13 + λ− iπ
2

,

η3
(12334)(1234) =

2(µ42σ24 + 2σ31 − λ+ κ) − 3iπ
4

.

Similarly as for the SU(4)2-HSG model studied before, one
of the main predictions, which supports the working of our
proposal, are the masses of the unstable particles. In the
case of the present theory, this predictive power is especially
important, since we intend to show the degeneracy of some
of these masses. For the secondary unstable particles we
can proceed as in the previous sections and consider the
processes j + (k3) and k + (j3) for fixed j, k and make
the primary unstable particles stable. By looking at the
corresponding fusing angles we find

lim
σ3→σk

j + (k3) → (jk3)

lim
σ3→σj

k + (j3) → (jk3)


 ⇒ m(jk3) ∼ me|σjk|/2,

(4.40)
that is, the masses of the secondary unstables are pre-
dicted once more according to (2.3). Most interesting is
the analysis for the next generation of unstable particles,
the tertiaries.

Let us consider the formation process for the particle
(1234). We have to look at the processes (jk3)+l → (1234)

with j, k, l ≡ {1, 2, 4} such that (jk3) ∈ P,

lim
σj→σk

lim
σ3→σk

j + (k3) → (jk3) + l

lim
σ3→σj

k + (j3) → (jk3) + l


 → (1234) ⇒

m(1234) ∼
√

2me
|σl3|

2 . (4.41)

This equation requires some comments. Reading (4.41) for
each individual value of l, we end up with the condition
σk = σj = σ3 for j, k ∈ {1, 2, 4} �= l. This should hold for
all values of l, such that when we demand the uniqueness
of the mass m(1234) we end up with the condition σ1 =
σ2 = σ3 = σ4. This means

m(1234) ∼
√

2m, (4.42)

and the particle (1234) will also be invisible in any RG
flow. Let us now consider the tertiary particle (12334).
The processes to be investigated are the ones listed above
in (4.39)

lim
σj→σk

lim
σ3→σk

j + (k3) → (jk3) + l

lim
σ3→σj

k + (j3) → (jk3) + l




→ σl → σ3(1234) + 3 → (12334)

⇒ m(12334) ∼ m, (4.43)

lim
σl→σ3

(l3) +
lim

σ3→σk

j + (k3)

lim
σ3→σj

k + (j3)




→ (l3) + σj → σk(jk3) → (12334)

⇒ m(12334) ∼ m. (4.44)

We presented here the complete chain of processes leading
to the formation of the unstable particle (12334). As can
be seen from (4.44) and (4.43), making all intermediate
particles stable amounts to the equality of all resonance
parameters, so that there is no σ-dependence in the final
expression for the mass. Therefore, with regard to the mass
spectrum, the particle (12334) is indistinguishable from the
stable particles in the theory.

Due to the fact that the formation of (1234) and (12334)
requires all resonance parameters to be equal, the param-
eters κ and λ can never be fixed by the mass analysis.
Similarly the parameters µij can also not be constrained
further by means of the mass analysis. However, there is still
a further check to be carried out, namely the decoupling
rule. For the choice mentioned σ13 > 0, σ23 > 0, σ43 > 0
we expect to find the following decoupling flow:

lim
σ43,σ23,σ13→∞ S̃SO(8)(σ13, σ23, σ43)

= lim
σ43,σ23→∞ S̃SU(4)(σ23, σ43) + S̃SU(2)

= lim
σ43→∞ S̃SU(3)(σ43) + S̃SU(2) + S̃SU(2)

= S̃SU(2) + S̃SU(2) + S̃SU(2). (4.45)
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In order to achieve consistency of S̃ with (4.45) the following
constraints have to be satisfied:

|µij | > 2,

|κ1| > 2, |κ2| > 0, |κ4| > 0,

|λ2| > 1, |λ4| > 1, |λ1| > 0,

|κ1 + µ12| > 0, |κ1 + µ14| > 0,

|κ2 + µ42| > 2, |κ2 − µ12| > 0, (4.46)

|κ4 + µ42| > 0, |κ4 − µ42| > 2,

|λ1 − κ1 + 1| > 0, |λ1 + µ14 + 1| > 0,

|λ1 + µ12 + 1| > 0,

|λ2 − κ2 − µ42| > 0, |λ2 − µ12| > 0,

|λ2 − µ42| > 0,

|λ4 − κ4 + µ42| > 0, |λ4 − µ42| > 0,

|λ4 − µ14| > 0,

for

κ = κ1σ13 + κ2σ23 + κ4σ43 and

λ = λ1σ13 + λ2σ23 + λ4σ43. (4.47)

A possible, but not unique, choice which allows one to
satisfy the conditions (4.46) is

µij = κ1 = λ1 = 5/2, λ2 = λ4 = 3/2

and

κ4 = κ2 = 7/2. (4.48)

We summarize the main new observations from this exam-
ple: Tertiary unstable particles can be formed, but in this
case they are unavoidably mass degenerate in comparison
with a primary and a stable particle.

4.2 Thermodynamic Bethe ansatz analysis

In this section we want to compare the findings of the
previous section with an alternative method. We employ
for this the thermodynamic Bethe ansatz [24] in order to
compute the scaling function in dependence of the inverse
temperature. One should stress that the only input into this
approach is the proper S-matrix involving stable particles
and not S̃. As discussed in [11] for the first time for the
HSG models, we expect to find the typical staircase pattern,
in which each step can be related to the energy scale of
the formation of at least an unstable particle. The central
equations to solve in this context are the TBA equations

rmi
a cosh θ = εi

a(θ) +
�∑

b=1

�̃∑
j=1

Φij
ab ∗ Lj

b(θ). (4.49)

By the symbol “∗” we denote the rapidity convolution of
two functions defined as f ∗g(θ) :=

∫
dθ′/2π f(θ−θ′)g(θ′).

The renormalization group parameter r is related to the
temperature T by r = m/T , where m is the mass scale of
the lightest particle. We also re-defined the masses as usual
by mi

a → mi
a/m. The pseudo-energies εi

a(θ) are related to
the functions Lj

b(θ) = ln(1 + e−εj
b(θ)). The kernels in the

integrals carry the information of the dynamical interaction
of the system and are given by

Φij
ab(θ) = −i

d
dθ

lnSij
ab(θ) . (4.50)

Recall that in general we characterize the particles by two
quantum numbers (a, i) as explained in Sect. 3, unlike in
the last sections where we could drop one as we were dealing
with level 2 only. For instance for the g̃2-HSG scattering
matrix (4.3) the kernel simply reads

Φij(θ) = Ĩij cosh−1(θ + σij) , (4.51)

with Ĩ being the incidence matrix of g̃. Having solved
the equations (4.49) for the pseudo-energies εi(θ) one can
compute the scaling function

c(r) =
3 r
π2

∑
i,a

mi
a

∞∫
0

dθ cosh θ (Li
a(θ) + Li

a(−θ)) . (4.52)

Due to its non-linear nature the TBA equations are known
not to be solvable analytically, albeit in certain regions
analytical approximations exist. We shall now solve these
equations numerically. According to the above discussion
we are particularly interested in higher rank Lie algebras,
since the decoupling rule (3.4) will be most complex in
that case. Even though solving (4.49) numerically is a rel-
atively simple iteration problem, its full solution for high
ranks requires a considerable computational effort. In or-
der to tackle such situations a sophisticated procedure has
been developed [25], which allows one to compute in a rea-
sonable short time high rank scaling functions to a very
high precision.

However, in many cases one can use some standard
techniques, see e.g. [11,24], and approximate (4.49) by the
so-called constant TBA equations and predict the values
for c. In a large regime for θ, when r is small, one may
approximate εi

a(θ) = εi
a = const. By standard TBA ar-

guments [24] it follows that the effective central charge is
expressible as

ceff =
6
π2

�∑
a=1

�̃∑
i=1

L
(

xi
a

1 + xi
a

)
, xi

a =
�∏

b=1

�̃∏
j=1

(1 + xj
b)

Nij
ab ,

(4.53)
withL(x) =

∑∞
n=1 x

n/n2+lnx ln(1−x)/2 denotingRogers
dilogarithm,

xi
a = exp(−εi

a) and N ij
ab = 1/2π

∫ ∞

−∞
dθ Φij

ab(θ) .

We will exploit this fact below.
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Fig. 3. The SU(4)2 RG flow

4.2.1 The SU(4)2-HSG model

As already discussed as an example in Sects. 3.1 and 3.2.2,
we have two qualitatively different behaviors for this case.
For the ordering σ21 > 0, σ23 > 0 we expect to find
three plateaus in the scaling function, whereas the order-
ing σ21 > 0, σ32 > 0 is associated to a different decoupling
rule with four plateaus. This is the behavior the decoupling
rule predicts and which we already saw confirmed when
taking the limits of the scattering matrix obtained from
our bootstrap proposal. In addition we now also find this
behavior being validated with a TBA analysis. Figure 3
contains the numerical outcome of the solutions of (4.49)
and (4.52) and agrees with our expectations. Note that we
do not only predict correctly the height of the plateaus, but
also their onset at ln(r/2) ∼ σ/2, which is in agreement
with the approximation to the Breit–Wigner formula (2.3).
From this analysis we can now support our reasoning with
regard to the comment on the occurrence of the absolute
value in the Breit–Wigner formula. The two cases presented
in Fig. 3 only differ by the signs of the resonance parameter
σ12 and are evidently not identical. In one case we have
σ13 = σ12 +σ23 = 90 leading to an additional plateau and
in the other we have σ13 = σ12 +σ23 = 30, which does not
give an onset related to σ13 as the decoupling between the
vertices 1 and 2 already took place.
These findings seem to contradict some result previously
obtained from a form factor analysis [20]. In there as in
all previous publications on the subject, e.g. [10, 11], an
absolute value was used in the Breit–Wigner formula, such
that the signs of the resonance parameters were handled
quite casual. In fact, the results presented in Fig. 1 in [20]
for SU(4)2 correspond to the values σ12 = 50, σ23 = −20
rather than σ12 = 50, σ23 = 20 which agrees with the
decoupling rule. Likewise matters are clarified below for
the SU(5)2-HSG case.

Fig. 4. The SU(5)2 RG flow

The occurrence of additional plateaus which could not be
associated to primary unstable particles for several alge-
bras was noted in [25]. Their occurrence in the SU(4)2,
SU(5)2, SO(8)2-HSG models, as will also be discussed in
the next section, was also commented upon in [26]. This
latter observation was only based on a TBA-calculation
of the finite size scaling function. In [26] the statement
was made that these further plateaus could possibly be
related to “new” unstable particles in the spectrum. How-
ever, predictive rules for the fixed points of the RG flow
such as the decoupling rule (3.4) and also for the on-set as
the bootstrap principle, which we both provide here, were
absent.

4.2.2 The SU(5)2-HSG model

This case already allows for many more possibilities, that
is, potentially 6! different orderings of the resonance pa-
rameters. Let us discuss one case in more detail and present
two more in a shorter form. We choose the values for the
resonance parameters directly associated to the links of the
Dynkin diagram, i.e. the primary unstables, as σ23 = 90,
σ12 = 50, σ34 = 20, such that the remaining parameters
result in σ14 = 160, σ13 = 140, σ24 = 110. According to the
decoupling rule we can then predict the renormalization
group flow. We report here the flow from the ultraviolet to
the infrared, indicating the resonance parameters respon-
sible for the particular onsets together with the Dynkin
diagrams of the new underlying algebra and their related
Lie groups and Virasoro central charges:
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Comparing this computation with the numerical outcome
of our TBA analysis, depicted in Fig. 4, reproduces very
well this flow in form of the dotted line together with the
onset at ln(r/2) ∼ σ/2 for each resonance parameter. Note
the explicit occurrence of the secondary unstable particles.
The other two examples presented in Fig. 4 are

SU(5) 20/7 ∼ 2.86

→ σ14 = 160/σ14 = 160

SU(4)⊗2/SU(3) 2.8

→ σ13 = 140/σ13 = 110

SU(4) ⊗ SU(3)/SU(2) 2.7

→ σ12 = 90/σ12 = 90

SU(4) ⊗ SU(2) 2.5 (4.54)

→ σ24 = 70/σ24 = 70

SU(3)⊗2 ⊗ SU(2)/SU(2) 2.4

→ σ23 = 50/σ34 = 50

SU(3) ⊗ SU(2)⊗2 2.2

→ σ34 = 20/σ23 = 20

SU(2)⊗4 2

Note that both orderings in (4.54) give rise to the same flows
which is once again in agreement with the decoupling rule.
The difference between these two orderings is, however,
that we are dealing with theories which contain different
mass spectra of the unstable particles, such that the onset
varies in both cases according to (2.3).

4.2.3 The SO(8)2-HSG model

Being a rank 4 algebra as the previous example, also in
this case we have potentially 6! different orderings of the
resonance parameters. Let us study this case for the or-
dering

σ24 = 140 > σ23 = 90 > σ21 = σ14 = 70 > σ34 = 50

> σ13 = 20 . (4.55)

Then, according to the decoupling rule, we predict the flow
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From the decoupling at σ14 we observe that it is important
to keep track of the simple root labels on the vertices. The
cancellation will be different depending on if one decouples
next with σ13 or σ34. The presented values for the RG fixed
points may be compared with the dotted line in Fig. 5,
which is again the numerical outcome of a TBA analysis.
We present two more flows in Fig. 5. Once again the two
different orderings lead to the same flows, but the onsets
vary according to (2.3). An important fact to notice from all
graphs is that we only observe the primary and secondary
unstables in this analysis and the tertiaries remain invisible.
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Fig. 5. The SO(8)2 RG flow

This is in agreement with our bootstrap analysis in Sect.
3.2.3, which provides a consistent explanation of the claim
that all positive roots but the simple ones should be related
to unstable particles:

SO(8) 3

→ σ14 = 170/σ24 = 140

SU(4)⊗2/SU(3) 2.8

→ σ12 = 140/σ14 = 110

SU(4) ⊗ SU(3)/SU(2) 2.7

→ σ13 = 100/σ34 = 90 (4.56)

SU(4) ⊗ SU(2) 2.5

→ σ34 = 70/σ23 = 50

SU(2)⊗2 ⊗ SU(3) 2.2

→ ∗ ∗ ∗ ∗ ∗/σ21 = 30 is already decoupled

→ σ32 = 40/σ13 = 20

SU(2)⊗4 2

→ σ24 = 30/ ∗ ∗ ∗ ∗ ∗ ∗ is already decoupled

In summary, we conclude from this section that the
number of unstable particles is actually 12, in agreement
with (4.5), but for the mentioned reason only 10 can be
seen in the RG flow.

4.2.4 The (E6)2-HSG model

In this case we have already 15! different possible orderings.
We want to present two more explicit examples, which will
be instructive since in comparison with the previous ones
they add more non-trivial structure, namely mass degener-
acy. Note that this degeneracy is not the unavoidable one of

the tertiary unstables as discussed in the previous section,
but it arises through the particular choice of the primary
resonance parameters. This is nonetheless instructive as
we will demonstrate that the decoupling rule also works
well in that case. We label the particles as indicated in the
following Dynkin diagram:
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We choose once again first the ordering for the primary
resonance parameters

σ13 = 100 > σ34 = 80 > σ45 = 60 > σ56 = 40 > σ24 = 20 .
(4.57)

According to the decoupling rule we predict then the flow:

E6
36
7

∼ 5. 14

→ σ16 = 280

SO(10)⊗2/SO(8) 5

→ σ15 = 240

SO(10) ⊗ SU(5)/SU(4)
34
7

∼ 4. 86

→ σ14 = σ36 = 180

SO(8) ⊗ SU(5) ⊗ SU(3)/SU(4) ⊗ SU(2)
319
70

∼ 4. 56

→ σ12 = 160 is already decoupled

→ σ35 = 140

SU(5) ⊗ SU(4) ⊗ SU(3)/SU(3) ⊗ SU(2)
61
14

∼ 4. 36

→ σ26 = 120 (4.58)

SU(4)⊗3 ⊗ SU(3)/SU(3)⊗2 ⊗ SU(2) 4.3

→ σ13 = σ46 = 100

SU(4)⊗2 ⊗ SU(3) ⊗ SU(2)/SU(3) ⊗ SU(2)4

→ σ25 = σ34 = 80

SU(3)⊗3 ⊗ SU(2)⊗2/SU(2)⊗2 3.6

→ σ32 = σ45 = 60

SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40

SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20

SU(2)⊗6 3

These analytical predictions are well confirmed with the
outcome of our TBA analysis as presented by the solid line
in Fig. 6. Note that eight particles are pairwise degenerate
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S =




[2]−1
0 e− iπ

3 [1]σ12 1 −[1]−1
0 e− 2πi

3 [2]σ12 1

e
iπ
3 [1]σ21 [2]−1

0 e− iπ
3 [1]σ23 e

2πi
3 [2]σ21 −[1]−1

0 e− 2πi
3 [2]σ23

1 e
iπ
3 [1]σ32 [2]−1

0 1 e
2πi
3 [2]σ32 −[1]−1

0

−[1]−1
0 e− 2πi

3 [2]σ12 1 [2]−2
0 [4]−1

0 −e− iπ
3 [1]σ12 1

e
2πi
3 [2]σ21 −[1]−1

0 e− 2πi
3 [2]σ23 −e

iπ
3 [1]σ21 [2]−2

0 [4]−1
0 −e− iπ

3 [1]σ23

1 e
2πi
3 [2]σ32 −[1]−1

0 1 −e
iπ
3 [1]σ32 [2]−2

0 [4]−1
0




(4.61)

and we therefore expect to find 15 − 8/2 = 11 plateaus in
the flow. The first step which corresponds to one of these
degeneracies occurs for instance at σ14 = σ36 and we have
to apply the decoupling rule twice at this point. The dashed
line corresponds to the flow

E6
36
7

∼ 5. 14

→ σ16 = 280

SO(10)⊗2/SO(8) 5

→ σ15 = 240

SO(10) ⊗ SU(5)/SU(4)
34
7

∼ 4. 86

→ σ36 = 220

SU(5)⊗2 ⊗ SO(8)/SU(4)⊗2 33
7

∼ 4. 71

→ σ35 = 180

SU(5)⊗2/SU(3)
158
35

∼ 4. 51

→ σ26 = 160

SU(4)⊗2 ⊗ SU(5)/SU(3)⊗2 156
35

∼ 4. 46

→ σ14 = σ46 = 140 (4.59)

SU(4)⊗2 ⊗ SU(3)⊗2/SU(2)⊗2 ⊗ SU(3) 4.2

→ σ12 = σ25 = 120

SU(4) ⊗ SU(3)⊗3/SU(2)⊗3 4.1

→ σ45 = 100

SU(4) ⊗ SU(3)⊗2/SU(2) 3.9

→ σ34 = 80

SU(3)⊗3 3.6

→ σ13 = σ32 = 60

SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40

SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20

SU(2)⊗6 3

Now only six particles are pairwise degenerate and we ex-
pect to find 15−6/2 = 12 plateaus, which is precisely what

Fig. 6. The (E6)2 RG flow

we see in Fig. 6. Overall we have seen in this section that
even for this involved case the decoupling rule is confirmed.

4.2.5 The SU(4)3-HSG model

In order to support the working of the decoupling rule also
for higher level algebras we will now consider one level 3
example, i.e. SU(4)3. In this model we have six particles.
When labeling the rows and columns in the order {(1, 1),
(1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}, the scattering matrix
in this case reads (see above, (4.61)) where we abbrevi-
ated [x]σ := sinh 1

2

(
θ + σ − iπx

3

)
/ sinh 1

2

(
θ + σ + iπx

3

)
. As

in the previous cases we can now solve the TBA equations
numerically and according to the fusing rule we expect as
in the level 2 case either 3 or 4 plateaus depending on the
ordering σ21 > 0, σ23 > 0 or σ21 > 0, σ32 > 0, respectively.

SU(4)3
24
7

∼ 3. 49

→ σ23 = 60

SU(2)3 ⊗ SU(3)3 2.8

→ σ21 = 30

(SU(2)3)
⊗3 2.4

or

SU(4)3
24
7

∼ 3. 49 (4.61)
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→ σ13 = 90

(SU(3)3)
⊗2
/SU(2)3 3.2

→ σ23 = 60

SU(2)3 ⊗ SU(3)3 2.8

→ σ12 = 30

(SU(2)3)
⊗3 2.4

Indeed Fig. 7 confirms this behavior in the form of the solid
and dashed line. Unfortunately, the iterative procedure
used for solving the TBA equations ceases to converge when
we reach the value ln(r/2) equal to the highest resonance
parameter in both cases. Nonetheless, the highest plateau
may be computed analytically simply from the constant
TBA equations (4.53). In Fig. 7 we indicate these analytical
values, which we cannot obtain numerically at present,
by the dotted lines. The other RG fixed points may be
computed similarly. We evaluate

x1
1 = x1

2 = x3
1 = x1

2 =
sin

( 2π
7

)
sin

( 4π
7

)
sin

( π
7

)
sin

( 5π
7

) − 1,

x2
1 = x2

2 =
sin2 ( 3π

7

)
sin

( π
7

)
sin

( 5π
7

) − 1, (4.62)

ceff =
6
π2

[
4L

(
x1

1

1 + x1
1

)
+ 2L

(
x2

2

1 + x2
2

)]

=
24
7

∼ 3.43 . (4.63)

The important fact here is the confirmation of the decou-
pling rule for higher levels, sustained by the occurrence of
the additional plateau at 3.2.

Fig. 7. The SU(4)3 RG flow

4.2.6 The Sp(4)2-HSG model

Having provided some evidence for the working of the de-
coupling rule (3.4) at higher levels, we now want to extend
this also to non-simply laced algebras, for which consistent
S-matrices were proposed in [12]. Since a TBA analysis
has not been carried out for the non-simply laced case, the
following will also provide support for the working of the
proposal in [12]. According to the latter the Sp(4)2-HSG
model is comprised out of four stable particles:

P =
{

(1, 1) = (1, 1), (1, 2) = (3, 2), (2, 2)

= (2, 2), (3, 2) = (1, 2)
}
, (4.64)

where, as before, we refer to every particle by two quantum
numbers (a, i). Labeling the rows and columns of the S-
matrix in the same order as in (4.64) and particularizing
the closed formulae provided in [12] yields

SSp(4)2 = (4.65)



−1 −(σ12, 2) (σ12, 1) (σ12, 3) −(σ12, 2)

−(σ21, 2) i(0, −2) − (0, −1) (0, −3) −i(0, −2)

(σ21, 1) (σ21, 3) − (0, −1) (0, −3) (0, −2)2 − (0, −1) (0, −3)

−(σ21, 2) −i(0, −2) − (0, −1) (0, −3) i(0, −2)




,

where σ12 = − σ21 is the only resonance parameter in the
theory and we employed the building blocks (4.4). Carrying
out the logarithmic derivative of the individual components
of SSp(4)2 yields the kernel

ΦSp(4)2 = (4.66)



0 1
cosh(θ+σ12)

2
√

2 cosh(θ+σ12)
cosh 2(θ+σ12)

1
cosh(θ+σ12)

1
cosh(θ+σ21)

−1
cosh θ

−2
√

2 cosh θ
cosh 2θ

−1
cosh θ

2
√

2 cosh(θ+σ21)
cosh 2(θ+σ21)

−2
√

2 cosh θ
cosh 2θ

−2
cosh θ

−2
√

2 cosh θ
cosh 2θ

1
cosh(θ+σ21)

−1
cosh θ

−2
√

2 cosh θ
cosh 2θ

−1
cosh θ




.

We are content here with the presentation of the analytic
approximations for the plateaus. As we are dealing with
functions strongly peaked at the origin, we can approximate
the TBA equations and obtain the effective central charge
in the deep UV from the constant TBA equations (4.53).
The N -matrix involved in there reads

NSp(4)2 =
1
2π

∞∫
−∞

dθΦSp(4)2(θ)

=




0 1/2 1 1/2
1/2 −1/2 −1 −1/2
1 −1 −1 −1

1/2 −1/2 −1 −1/2


 . (4.67)

One can easily check that the same matrix (4.67) is also
obtainedwhen specializing the general formula given in [12].
The corresponding constant TBA solutions of (4.53) are

x1
1 = 3, x2

1 = x4
1 = 2/3, x3

1 = 4/5, (4.68)



410 O.A. Castro-Alvaredo et al.: Integrable scattering theories with unstable particles

which yield the Virasoro effective central charge

ceff =
6
π2

[
L

(
3
4

)
+ 2L

(
2
5

)
+ L

(
4
9

)]
= 2 , (4.69)

in complete agreement with the expectations (4.2), for k =
2, 	 = 2, h = 4 and h∨ = 3. Let us now apply the decoupling
rule to (4.65). We expect2

�

�����
��
�� �

�����
������ �

� ��� �

�����

�

�����
������ � ������ ���

Indeed taking the limit σ12 → ∞ in (4.66) gives the N -
matrix

lim
σ12→∞NSp(4)2 =




0 0 0 0
0 −1/2 −1 −1/2
0 −1 −1 −1
0 −1/2 −1 −1/2


 . (4.70)

We note that particle (1, 1) has completely decoupled from
the other particles. The solutions of the constant TBA
equations are then

x1
1 = 1, x2

1 = x4
1 = 1/2, x3

1 = 1/3, (4.71)

which gives

ceff =
6
π2

[
L

(
1
2

)
+ 2L

(
1
3

)
+ L

(
1
4

)]
= 3/2, (4.72)

in complete agreement with our expectations. Taking now
m1 orm2 to infinity yields SU(2)4 or SU(2)2, respectively.
This is what is predicted from the relations (3.9) in [18],
which makes the proposal in [12] natural.

5 Conclusion

We have proposed a new bootstrap principle, which in-
volves also unstable particles in the scattering processes.
So far, only primary unstable particles were analyzed in the
literature, which occurred merely as side products in the
scattering processes of stable particles. Our proposal goes
beyond this and has predictive power, as it allows one to
evaluate the mass spectrum of further unstable particles,
such as secondaries, tertiaries, etc. In addition, it explains
the degeneracy of tertiary unstable particles and possibly
of higher generations for certain theories.

We commented on the general Lie algebraic picture,
which underlies the construction of all known scattering
theories which involve unstable particles in their spectrum.
Within this picture we propose various new scattering ma-
trices for combinations of algebras not explored so far.

2 Here the arrow in the Dynkin diagram is not related to the
sign of σ and has the usual meaning, that is, pointing from the
long to the short root.

Furthermore, we proposed a consistent way to go beyond
scaling theories of statistical models and to incorporate an
effective coupling constant. The structure of the models ob-
tained in this way can be enhanced by a complexification
of the coupling constant and hence combines the “roaming
models” with “Lie algebraic” ones. A more detailed anal-
ysis of these latter models would be very interesting and
lead to yet unknown staircase patterns in the RG flow.

For all integrable scattering theories which are of the
general form as discussed in Sect. 3, we formulate a new Lie
algebraic decoupling rule which predicts the fixed points
of the RG flow from the ultraviolet to the infrared. The
decoupling rule is in agreement with the bootstrap con-
struction. Still, it would be highly desirable to derive the
decoupling rule more rigorously from first principles.

Our proposals are additionally confirmed by a TBA
analysis, which reproduces the bootstrap prediction of the
mass spectrum of unstable particles including those which
are degenerate and hence invisible in the RG flow. For
the HSG models the implications are that each positive
root is associated to a particle. All predictions from our
decoupling rule are in perfect agreement with the outcome
of our TBA analysis, even for involved high rank algebras
such as E6, for higher level and the non-simply laced case.
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